Antifungal effect of a metabolite of Pseudomonas aeruginosa LV strain on azole-resistant Candida albicans
DOI:
https://doi.org/10.46311/2318-0579.61.eUJ4662Keywords:
Antibiofilm, antimicrobial activity, fluopsin C, fungicide.Abstract
Candida albicans remains the most common agent of candidiasis worldwide. This yeast is generally sensitive to most antifungals, however, the emergence of azole-resistant C. albicans has been reported. In addition, this microorganism can form biofilms on various surfaces, making it difficult to treat infections. In this study, the effect of secondary metabolites of Pseudomonas aeruginosa strain LV on planktonic and sessile cells of C. albicans, with different genotypes and susceptibility profile to fluconazole and voriconazole, was evaluated. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of the semi-purified fraction F4a ranged from 1.56 to 6.25 μg/mL and 6.25 to 25 μg/mL, respectively. Fluopsin C appears to be the antifungal component of F4a. The semi-purified fraction and fluopsin C showed fungicidal activity, dose and time dependent. F4a caused severe damage to the morphology and ultrastructure of planktonic fungal cells, and significantly reduced the viability of 24-hour biofilms, with MIC for sessile cells from 12.5 to 25.0 μg/mL. However, cytotoxicity was detected in mammalian cells for F4a and fluopsin C at concentrations that showed antifungal activity. These results indicate that fluopsin C may be a prototype for the development of new antifungals for C. albicans.
Downloads
References
Afonso, L., Andreata, M. F. D. L., Chryssafidis, A. L., Alarcon, S. F., Neves, A. P. das., Silva, J. V. F. R. da., & Andrade, G. (2022). Fluopsin C: a review of the antimicrobial activity against Phytopathogens. Agronomy, 12(12), p. 2997. doi: 10.3390/agronomy12122997 DOI: https://doi.org/10.3390/agronomy12122997
Alves de Lima, L. V., Silva, M. F. da., Concato, V. M., Rondina, D. B. L., Zanetti, T. A., Felicidade, I., & Mantovani, M. S. (2022). DNA damage and reticular stress in cytotoxicity and oncotic cell death of MCF-7 cells treated with fluopsin C. Journal of Toxicology and Environmental Health A, 85(21), pp. 896-911. doi: 10.1080/15287394.2022.2108950 DOI: https://doi.org/10.1080/15287394.2022.2108950
Atiencia-Carrera, M. B., Cabezas-Mera, F. S., Tejera, E., & Machado, A. (2022). Prevalence of biofilms in Candida spp. bloodstream infections: a meta-analysis. PLoS One, 17(2), p. e0263522. doi: 10.1371/journal.pone.0263522 DOI: https://doi.org/10.1371/journal.pone.0263522
Bansal, H., Singla, R. K., Behzad, S., Chopra, H., Grewal, A. S., & Shen, B. (2021). Unleashing the potential of microbial natural products in drug discovery: focusing on streptomyces as antimicrobials goldmine. Current Topics in Medicinal Chemistry, 21(26), pp. 2374-2396. doi: 10.2174/1568026621666210916170110 DOI: https://doi.org/10.2174/1568026621666210916170110
Barry, L. A., Craig, W. A., Nadler, H., Reller, L. B., Sanders, C. C., & Swenson, J. M. (1999). Methods for determining bactericidal activity of antimicrobial agents; approved guideline. National Committee for Clinical Laboratory Standards.
Bartolomeu-Gonçalves, G., Moreira, C. L., Andriani, G. M., Simionato, A. S., Nakamura, C. V., Andrade, G., & Yamada-Ogatta, S. F. (2022). Secondary metabolite from Pseudomonas aeruginosa LV strain exhibits antibacterial activity against Staphylococcus aureus: Metabólito secundário de Pseudomonas aeruginosa cepa LV exibe atividade antibacteriana em Staphylococcus aureus. Brazilian Journal of Development, 8(10), pp. 67414-67435. doi: 10.34117/bjdv8n10-170 DOI: https://doi.org/10.34117/bjdv8n10-170
Bedoya, J. C., Dealis, M. L., Silva, C. S., Niekawa, E. T. G., Navarro, M. O. P., Simionato, A. S., & Andrade, G. (2019). Enhanced production of target bioactive metabolites produced by Pseudomonas aeruginosa LV strain. Biocatalysis and Agricultural Biotechnology, 17, pp. 545-556. doi: 10.1016/j.bcab.2018.12.024 DOI: https://doi.org/10.1016/j.bcab.2018.12.024
Bizerra, F. C., Nakamura, C. V., Poersch, C. de., Estivalet Svidzinski, T. I., Borsato Quesada, R. M., Goldenberg, S., & Yamada-Ogatta, S. F. (2008). Characteristics of biofilm formation by Candida tropicalis and antifungal resistance. FEMS Yeast Research, 8(3), pp. 442-450. doi: 10.1111/j.1567-1364.2007.00347.x DOI: https://doi.org/10.1111/j.1567-1364.2007.00347.x
Bretagne, S., Sitbon, K., Desnos-Ollivier, M., Garcia-Hermoso, D., Letscher-Bru, V., Cassaing, S., & French Mycoses Study Group. (2022). Active surveillance program to increase awareness on invasive fungal diseases: the French RESSIF network (2012 to 2018). Mbio, 13(3), pp. e00920-22. doi: 10.1128/mbio.00920-22 DOI: https://doi.org/10.1128/mbio.00920-22
Clinical and Laboratory Standards Institute. (2017). Reference method for broth dilution antifungal susceptibility testing of yeasts. 4th ed. CLSI Standard M60. Wayne, PA, USA: CLSI.
Clinical and Laboratory Standards Institute. (2022). Performance standards for antifungal susceptibility testing of yeasts. 3rd ed. CLSI supplement M27M44S. Wayne, PA, USA: CLSI.
Del Rio, L. A., Gorgé, J. L., Olivares, J., & Mayor, F. (1972). Antibiotics from Pseudomonas reptilivora II. Isolation, purification, and properties. Antimicrobial Agents and Chemotherapy, 2(3), pp. 189-194. doi: 10.1128/AAC.2.3.189 DOI: https://doi.org/10.1128/AAC.2.3.189
Egawa, Y., Umino, K., Awataguchi, S., Kawano, Y., & Okuda, T. (1970). Antibiotic YC 73 of Pseudomonas origin. 1. Production, isolation and properties. The Journal of Antibiotics, 23(6), pp. 267-70. doi: 10.7164/antibiotics.23.267 DOI: https://doi.org/10.7164/antibiotics.23.267
Egawa, Y., Umino, K., Ito, Y., & Okuda, T. (1971). Antibiotic YC 73 of Pseudomonas origin. II. Structure and synthesis of thioformin and its cupric complex (YC 73). The Journal of Antibiotics, 24(2), pp. 124-130. doi: 10.7164/antibiotics.24.124 DOI: https://doi.org/10.7164/antibiotics.24.124
Eldesouky, H. E, Mayhoub, A., Hazbun, T. R., & Seleem, M. N. (2018). Reversal of azole resistance in Candida albicans by sulfa antibacterial drugs. Antimicrobial Agents and Chemotherapy, 62(3), pp. e00701-17. doi: 10.1128/AAC.00701-17 DOI: https://doi.org/10.1128/AAC.00701-17
Endo, E. H., Cortez, D. A. G., Ueda-Nakamura, T., Nakamura, C. V., & Dias Filho, B. P. (2010). Potent antifungal activity of extracts and pure compound isolated from pomegranate peels and synergism with fluconazole against Candida albicans. Research in Microbiology, 161(7), pp. 534-540. doi: 10.1016/j.resmic.2010.05.002 DOI: https://doi.org/10.1016/j.resmic.2010.05.002
Fan, F., Liu, Y., Liu, Y., Lv, R., Sun, W., Ding, W., & Qu, W. (2022). Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. International Journal of Antimicrobial Agents, 60(5-6), p. 106673. doi: 10.1016/j.ijantimicag.2022.106673 DOI: https://doi.org/10.1016/j.ijantimicag.2022.106673
Gross, H., & Loper, J. E. (2009). Genomics of secondary metabolite production by Pseudomonas spp. Natural Product Reports, 26(11), pp. 1408-1446. doi: 10.1039/b817075b DOI: https://doi.org/10.1039/b817075b
Heras, J., Domínguez, C., Mata, E., Pascual, V., Lozano, C., Torres, C., & Zarazaga, M. (2015). GelJ–a tool for analyzing DNA fingerprint gel images. BMC Bioinformatics, 16(1), pp. 1-8. doi: 10.1186/s12859-015-0703-0 DOI: https://doi.org/10.1186/s12859-015-0703-0
Itoh, S., Inuzuka, K., & Suzuki, T. (1970). New antibiotics produced by bacteria grown on n-paraffin (mixture of C12, C13 and C14 fractions). The Journal of Antibiotics, 23(11), pp. 542-545. doi: 10.7164/antibiotics.23.542 DOI: https://doi.org/10.7164/antibiotics.23.542
Kerbauy, G., Vivan, A. C., Simões, G. C., Simionato, A. S., Pelisson, M., Vespero, E. C., & Andrade, G. (2016). Effect of a metalloantibiotic produced by Pseudomonas aeruginosa on Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae. Current Pharmaceutical Biotechnology, 17(4), pp. 389-97. doi: 10.2174/138920101704160215171649 DOI: https://doi.org/10.2174/138920101704160215171649
Kerr, J. R., Taylor, G. W., Rutman, A., Høiby, N., Cole, P. J., & Wilson, R. (1999). Pseudomonas aeruginosa pyocyanin and 1-hydroxyphenazine inhibit fungal growth. Journal of Clinical Pathology, 52(5), p. 385. doi: 10.1136/jcp.52.5.385 DOI: https://doi.org/10.1136/jcp.52.5.385
Klepser, M. E., Ernst, E. J., Lewis, R. E., Ernst, M. E., & Pfaller, M. A. (1998). Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrobial Agents and Chemotherapy, 42(5), pp. 1207-1212. doi: 10.1128/AAC.42.5.1207 DOI: https://doi.org/10.1128/AAC.42.5.1207
Lopes, J. P., & Lionakis, M. S. (2022). Pathogenesis and virulence of Candida albicans. Virulence, 13(1), pp. 89-121. doi: 10.1080/21505594.2021.2019950 DOI: https://doi.org/10.1080/21505594.2021.2019950
Ma, L. S., Jiang, C. Y., Cui, M., Lu, R., Liu, S. S., Zheng, B. B., & Li, X. (2013). Fluopsin C induces oncosis of human breast adenocarcinoma cells. Acta Pharmacologica Sinica, 34(8), pp. 1093-100. doi: 10.1038/aps.2013.44 DOI: https://doi.org/10.1038/aps.2013.44
Morey, A. T., Souza, F. C. de., Santos, J. P., Pereira, C. A., Cardoso, J. D., Almeida, R. S. de., & Yamada-Ogatta, S. F. (2016). Antifungal activity of condensed tannins from Stryphnodendron adstringens: effect on Candida tropicalis growth and adhesion properties. Current Pharmaceutical Biotechnology, 17(4), pp. 365-75. doi: 10.2174/1389201017666151223123712 DOI: https://doi.org/10.2174/1389201017666151223123712
Moyes, D. L., Runglall, M., Murciano, C., Shen, C., Nayar, D., Thavaraj, S., & Naglik, J. R. (2010). A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host & Microbe, 8(3), pp. 225-235. doi: 10.1016/j.chom.2010.08.002 DOI: https://doi.org/10.1016/j.chom.2010.08.002
Navarro, M. O. P., Simionato, A. S., Pérez, J. C. B., Barazetti, A. R., Emiliano, J., Niekawa, E. T. G., & Andrade, G. (2019). Fluopsin C for treating multidrug-resistant infections: in vitro activity against clinically important strains and in vivo efficacy against carbapenemase-producing Klebsiella pneumoniae. Frontiers in Microbiology, 10, p. 2431. doi: 10.3389/fmicb.2019.02431 DOI: https://doi.org/10.3389/fmicb.2019.02431
Noble, S. M., Gianetti, B. A., & Witchley, J. N. (2017). Candida albicans cell-type switching and functional plasticity in the mammalian host. Nature Reviews Microbiology, 15(2), pp. 96-108. doi: 10.1038/nrmicro.2016.157 DOI: https://doi.org/10.1038/nrmicro.2016.157
Noumi, E., Snoussi, M., Saghrouni, F., Ben Said, M., Del Castillo, L., Valentin, E., & Bakhrouf, A. (2009). Molecular typing of clinical Candida strains using random amplified polymorphic DNA and contour‐clamped homogenous electric fields electrophoresis. Journal of Applied Microbiology, 107(6), pp. 1991-2000. doi: 10.1111/j.1365-2672.2009.04384.x DOI: https://doi.org/10.1111/j.1365-2672.2009.04384.x
Otsuka, H., Niwayama, S., Tanaka, H., Take, T., & Uchiyama, T. (1971). An antitumor antibiotic, no. 4601 from Streptomyces, identical with YC 73 of Pseudomonas origin. The Journal of Antibiotics, 25(6), pp. 369-70. doi: 10.7164/antibiotics.25.369 DOI: https://doi.org/10.7164/antibiotics.25.369
Patel, M. (2022). Oral cavity and Candida albicans: colonisation to the development of infection. Pathogens, 11(3), p. 335. doi: 10.3390/pathogens11030335 DOI: https://doi.org/10.3390/pathogens11030335
Patteson, J. B., Putz, A. T., Tao, L., Simke, W. C., Bryant III, L. H., Britt, R. D., & Li, B. (2021). Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa. Science, 374(6570), pp. 1005-1009. doi: 10.1126/science.abj6749 DOI: https://doi.org/10.1126/science.abj6749
Salvatori, O., Kumar, R., Metcalfe, S., Vickerman, M., Kay, J. G., & Edgerton, M. (2020). Bacteria modify Candida albicans hypha formation, microcolony properties, and survival within macrophages. mSphere, 5(4), p. e00689-20. doi: 10.1128/mSphere.00689-20 DOI: https://doi.org/10.1128/msphere.00689-20
Saville, S. P., Lazzell, A. L., Monteagudo, C., & Lopez-Ribot, J. L. (2003). Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryotic Cell, 2(5), pp. 1053-1060. doi: 10.1128/EC.2.5.1053-1060.2003 DOI: https://doi.org/10.1128/EC.2.5.1053-1060.2003
Shafiei, M., Peyton, L., Hashemzadeh, M., & Foroumadi, A. (2020). History of the development of antifungal azoles: a review on structures, SAR, and mechanism of action. Bioorganic Chemistry, 104, p. 104240. DOI: https://doi.org/10.1016/j.bioorg.2020.104240
Sharifi, M., Badiee, P., Abastabar, M., Morovati, H., Haghani, I., Noorbakhsh, M., & Mohammadi, R. (2023). A 3-year study of Candida infections among patients with malignancy: etiologic agents and antifungal susceptibility profile. Frontiers in Cellular and Infection Microbiology, 13, p. 555. doi: 10.3389/fcimb.2023.1152552 DOI: https://doi.org/10.3389/fcimb.2023.1152552
Spoladori, L. F. D. A., Andriani, G. M., Castro, I. M. D., Suzukawa, H. T., Gimenes, A. C. R., Bartolomeu-Gonçalves, G., & Yamada-Ogatta, S. F. (2023). Synergistic antifungal interaction between Pseudomonas aeruginosa LV strain metabolites and biogenic silver nanoparticles against Candida auris. Antibiotics, 12(5), p. 861. doi: 10.3390/antibiotics12050861 DOI: https://doi.org/10.3390/antibiotics12050861
Ward, T. L., Dominguez-Bello, M. G., Heisel, T., Al-Ghalith, G., Knights, D., & Gale, C. A. (2018). Development of the human mycobiome over the first month of life and across body sites. mSystems, 3(3), pp. 10-1128. doi: 10.1128/mSystems.00140-17 DOI: https://doi.org/10.1128/mSystems.00140-17
World Health Organization. (2022). Fungal priority pathogens list to guide research, development and Public Health action. World Health Organization: Geneva, Switzerland. Retrieved from https://www.who.int/publications/i/item/9789240060241
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Caroline Lucio Moreira, Guilherme Bartolomeu-Gonçalves, Gislaine Silva-Rodrigues, Ane Stéfano Simionato, Celso Vataru Nakamura, Marcus Vinicius Pimenta Rodrigues, Galdino Andrade, Eliandro Reis Tavares, Lucy Megumi Yamauchi, Sueli Fumie Yamada-Ogatta
This work is licensed under a Creative Commons Attribution 4.0 International License.
I declare/we declare that the text submitted here is original, of my own authorship and does not infringe any type of third party rights. The content is my/our sole responsibility. Possible research involving animals and/or human beings is in accordance with Resolution 196/96 of the National Health Council and its complements. I declare that I am/we are in possession of the written consent of patients and that the research and its procedures were timely and adequately approved by the Ethics Committee of the institution of origin. We further declare that all institutional affiliations and all sources of financial support for the work are duly informed. I certify that there is no commercial or associative interest that represents a conflict of interest related to the submitted work. If there is commercial interest, in addition to the technical and academic ones, in the publication of the article, the information will be reported during the text.